Abstract
Smartphones and similar devices allow access to a wealth of information. Navigating this wealth of information is problematic. Semantic locations, assigned to observed GPS user movements, can help in providing inforamtion that is useful to the user at a specific time or place. This paper shows how a stream of sensor data can be processed and interpreted to determine (i) the locations of interest for a user, such as home, work, etc, and (ii) to predict the expected future transitions between such locations. We have implemented our algorithms in a fully functional prototype smartphone app and backend, and we present results based on actual usage data gathered over the past few months. We conclude that inferred semantic location information allows a smart device to offer personalized, contextual, information without the need for the user to perform any explicit query. Our system is open source, and can be used to build context-aware recommender systems that suggest content which is at the right time and at the right place.
Original language | English |
---|---|
Title of host publication | Procedia Computer Science |
Publisher | Elsevier |
Pages | 297-304 |
Number of pages | 8 |
Volume | 34 |
DOIs | |
Publication status | Published - 2014 |
Event | The 11th International Conference on Mobile Systems and Pervasive Computing (MobiSPC'14), 18-08-2014 - Duration: 17 Aug 2014 → 20 Aug 2014 |
Conference
Conference | The 11th International Conference on Mobile Systems and Pervasive Computing (MobiSPC'14), 18-08-2014 |
---|---|
Period | 17/08/14 → 20/08/14 |